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Artificial Intelligence is everywhere!

Image and speech understanding

Autonomous navigation

Advertisement & social media
Robotics



Artificial Intelligence: 
A lot has happened over the last 40 years

Biol. Cybernetics 36, 193 202 (1980) Biological 
Cybernetics 
 9 by Springer-Verlag 1980 

Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 
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Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 

K. Fukushima, 1980

C. Szegedy, CVPR 2015
Compute power


(GPUs)
Engineering Data



What about AI in Medicine 
or Radiology?

AI In Medicine: Rise Of The 
Machines (Forbes, 2017)



Should we worry about AI?

"To the question, will AI replace radiologists, I say 
the answer is no…” 

“They should stop training radiologists now.”
Geoffrey Hinton (godfather of deep learning) in 2017

“… but radiologists who do AI will replace 
radiologists who don’t." 
Curtis Langlotz in 2017
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AI in Medical Imaging: Opportunities

Computer Aided Interpretation

Semantic Image Interpretation

Quantification of Imaging Biomarkers

Image Enhancement

Image Acquisition and Reconstruction

Computer Aided Diagnosis

Automated scan planning 
Accelerated imaging

Super-resolution

Organ localisation 
Organ segmentation

Tumour quantification 
Radiomics



AI in Medical Imaging: Opportunities

• Machine learning techniques are starting to reach levels of 
human performance in challenging visual tasks

• Big data is slowly arriving in medical imaging
UK Biobank will provide large-scale imaging data from 100,000 subjects



AI in Medical Imaging: Opportunities

• Machine learning techniques are starting to reach levels of 
human performance in challenging visual tasks

• Big data is slowly arriving in medical imaging
UK Biobank will provide large-scale imaging data from 100,000 subjects
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Lifestyle

Genetics

Clinical 
records



AI in Medical Imaging: 
Challenges

• AI or machine learning can be classified into:
– Unsupervised approaches
– Supervised approaches (most successful to date)

Model

Regression

Classification

Healthy
AD
Healthy
AD
Healthy

Data Labels

Supervision - model optimisation

Features

Prediction

Training data is key



• Training data is imperfect:
– training data may be wrongly 

labelled, e.g. for diseases such as 
Alzheimer’s confirmation requires 
pathology (difficult and costly to 
obtain)

• How to obtain training data?

AI in Medical Imaging: 
Challenges

Crowdsourcing

Experts

• Training data is expensive:
– manpower, cost, time
– years of training and expertise 

required

More importantly, radiology tasks are not simple 
classification tasks but far more complex 



Overview 

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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Image classification 

Abdominal View 
Confidence: 98%

Image reconstruction



MR image acquisition: Challenges

• Magnetic Resonance Imaging (MRI)
– MRI acquisition is inherently a slow process
– Slow acquisition is 

• ok for static objects (e.g. brain, bones, etc)
• problematic for moving objects (e.g. heart, liver, fetus)

– Options for MRI acquisition:
• real-time MRI: fast, but 2D and relatively poor image quality
• gated MRI: fine for period motion, e.g. respiration or cardiac 

motion but requires gating (ECG or navigators) leading to 
long acquisition times (30-90 min).



Example: Cardiac imaging

Myocardium!

Left Ventricle!

Right Ventricle!



• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

MR full acquisition

K-space

t = 0

Signal space

MR acquisition process is slow



MR full acquisition

t = 1

K-space Signal space

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.



• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

MR full acquisition

K-space

t = 2

Signal space



MR full acquisition

K-space

t = T

Signal space

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

There is significant spatio-temporal re
dundancy



• Acquiring a fraction of k-space accelerates the process 
but introduces aliasing in signal space.

K-space undersampling



• Acquiring a fraction of k-space accelerates the process 
but introduces aliasing in signal space.

K-space undersampling

K-space Signal space

Full sampling 
(slow)

25% sampling 
(4-fold 

acceleration)



Deep Cascade of CNNs for MRI 
Reconstruction
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 Schlemper et al. IEEE TMI 2017
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Deep Cascade of CNNs for MRI 
Reconstruction
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Magnitude reconstruction (6-fold)

(a) 6x Undersampled                (b) DLTG                            (c) CNN                       (d) Ground Truth

 Schlemper et al. IEEE TMI 2017

Reconstructions using ML



Magnitude reconstruction (11-fold)

(a) 11x Undersampled               (b) DLTG                            (c) CNN                       (d) Ground Truth

 Schlemper et al. IEEE TMI 2017

Reconstructions using ML



Overview 

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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Image classification 

Abdominal View 
Confidence: 98%

Image reconstruction



Automatic Standard Scan 
Plane Detection

Abdominal View 
Confidence: 98%

Lips View 
Confidence: 96%

Goal: Do this in real-time on images straight from US machine



Automatic Standard Scan 
Plane Detection

• Potential applications:
– Guidance: Assist 

inexperienced sonographers

Background (75%)



Automatic Standard Scan 
Plane Detection

• Potential applications:
– Guidance: Assist 

inexperienced sonographers
– Convenience: Automatically 

make a check list of visited 
planes

Abdominal 
Brain (Tv.) 
Brain (Cb.) 
Femur 
Kidneys 
Spine 
Lips 
4CH 
RVOT 
LVOT



Automatic Standard Scan 
Plane Detection

• Potential applications:
– Guidance: Assist 

inexperienced sonographers
– Convenience: Automatically 

make a check list of visited 
planes

– Reproducibility: Reduce 
variability between operators



Automatic Standard Scan 
Plane Detection: Method

• Fully convolutional neural network:

– Very fast
– Very accurate

C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Automatic Standard Scan 
Plane Detection: Data

• We use very large 2D ultrasound dataset consisting 
of images of standard views and videos 

• Data from
– 2700 patients
– Between 1200 and 4800 images for each standard plane



Demo



Automatic Standard Scan 
Plane Detection: Localisation

Localisation is (almost) for free in this framework!
C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Automatic Standard Scan 
Plane Detection: Localisation

• Can also identify which regions of a frame caused it to 
make a particular prediction

• This can be used for localisation of the fetal anatomy 
without having bounding boxes for training

C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Demo
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Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
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Image classification 

Abdominal View 
Confidence: 98%

Image reconstruction



Convolutional Neural Networks 
for Image Segmentation

Convolution + RELU
Max pooling

Transposed convolution
Softmax Skip layers



Image segmentation as a 
machine learning problem

• Fully connected networks (Long et al., 2015)
• Manual annotations of 4,872 subjects (QMUL/Oxford) 

with 93,128 pixelwise annotated 2D images slices
• Divided into training/validation/test: 3,972/300/600

RESEARCH Open Access

Reference ranges for cardiac structure and
function using cardiovascular magnetic
resonance (CMR) in Caucasians from the UK
Biobank population cohort
Steffen E. Petersen1*, Nay Aung1, Mihir M. Sanghvi1, Filip Zemrak1, Kenneth Fung1, Jose Miguel Paiva1,
Jane M. Francis2, Mohammed Y. Khanji1, Elena Lukaschuk2, Aaron M. Lee1, Valentina Carapella2, Young Jin Kim2,3,
Paul Leeson2, Stefan K. Piechnik2 and Stefan Neubauer2

Abstract

Background: Cardiovascular magnetic resonance (CMR) is the gold standard method for the assessment of cardiac
structure and function. Reference ranges permit differentiation between normal and pathological states. To date,
this study is the largest to provide CMR specific reference ranges for left ventricular, right ventricular, left atrial and
right atrial structure and function derived from truly healthy Caucasian adults aged 45–74.

Methods: Five thousand sixty-five UK Biobank participants underwent CMR using steady-state free precession
imaging at 1.5 Tesla. Manual analysis was performed for all four cardiac chambers. Participants with non-Caucasian
ethnicity, known cardiovascular disease and other conditions known to affect cardiac chamber size and function
were excluded. Remaining participants formed the healthy reference cohort; reference ranges were calculated and
were stratified by gender and age (45–54, 55–64, 65–74).

Results: After applying exclusion criteria, 804 (16.2%) participants were available for analysis. Left ventricular (LV)
volumes were larger in males compared to females for absolute and indexed values. With advancing age, LV
volumes were mostly smaller in both sexes. LV ejection fraction was significantly greater in females compared to
males (mean ± standard deviation [SD] of 61 ± 5% vs 58 ± 5%) and remained static with age for both genders. In
older age groups, LV mass was lower in men, but remained virtually unchanged in women. LV mass was
significantly higher in males compared to females (mean ± SD of 53 ± 9 g/m2 vs 42 ± 7 g/m2). Right ventricular (RV)
volumes were significantly larger in males compared to females for absolute and indexed values and were smaller
with advancing age. RV ejection fraction was higher with increasing age in females only. Left atrial (LA) maximal
volume and stroke volume were significantly larger in males compared to females for absolute values but not for
indexed values. LA ejection fraction was similar for both sexes. Right atrial (RA) maximal volume was significantly
larger in males for both absolute and indexed values, while RA ejection fraction was significantly higher in females.

Conclusions: We describe age- and sex-specific reference ranges for the left ventricle, right ventricle and atria in
the largest validated normal Caucasian population.

Keywords: Cardiovascular magnetic resonance, Reference values, Ventricular function, Atrial function
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(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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SA, basal SA, mid-ventricular SA, apical

LA, 2 chamber LA, 4 chamber



Evaluation of segmentation accuracy
Comparison to expert observers

Extended Data Table 4: The di↵erence in clinical measures between automated segmentation and manual

segmentation, as well between segmentations by di↵erent human observers. The first column shows the
di↵erence between automated and manual segmentations on a test set of 600 subjects. The second to fourth columns
show the inter-observer variability, which is evaluated on a randomly selected set of 50 subjects, each being analysed
by three di↵erent human observers (O1, O2, O3) independently. The mean and standard deviation of the absolute
di↵erence and relative di↵erence are reported.

(a) Absolute di↵erence

Auto vs Man O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (mL) 6.1±5.3 6.1±4.4 8.8±4.8 4.8±3.1

LVESV (mL) 5.3±4.9 4.1±4.2 6.7±4.2 7.1±3.8

LVM (gram) 6.9±5.5 4.2±3.2 6.6±4.9 6.5±4.8

RVEDV (mL) 8.5±7.1 11.1±7.2 6.2±4.6 8.7±5.8

RVESV (mL) 7.2±6.8 15.6±7.8 6.6±5.5 11.7±6.9

(b) Relative di↵erence

Auto vs Man O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (%) 4.1±3.5 4.2±3.1 6.3±3.3 3.4±2.2

LVESV (%) 9.5±9.5 6.8±7.5 12.5±8.5 11.7±5.1

LVM (%) 8.3±7.6 4.4±3.3 6.0±3.7 6.7±4.6

RVEDV (%) 5.6±4.6 8.0±5.0 4.2±3.1 5.7±3.6

RVESV (%) 11.8±12.2 30.6±15.5 10.9±8.3 16.9±9.2

Extended Data Table 5: The Dice metric, mean contour distance (MCD) and Hausdor↵ distance (HD)

between automated segmentation and manual segmentation for long-axis images. The mean and standard
deviation are reported on a test set of 600 subjects.

Dice MCD (mm) HD (mm)

LA cavity (2Ch) 0.93±0.05 1.46±1.06 5.76±5.85

LA cavity (4Ch) 0.95±0.02 1.04±0.38 4.03±2.26

RA cavity (4Ch) 0.96±0.02 0.99±0.43 3.89±2.39
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DeepMedic in Action

K. Kamnitsas et al. Medical Image Analysis, 2016



DeepMedic in Action

K. Kamnitsas et al. Medical Image Analysis, 2016



Practical challenges in many AI 
scenarios: Deployment in the clinic

• AI-based solutions often degrade 
when deployed in clinical scenarios

• This is caused by differences 
between training and test data, e.g. 

• different scanner hardware
• scanner protocols/sequences
• artefacts

• Manually annotating new data for 
each test domain is not a feasible 
solution

Siemens

Philips

GE
Transfer learning problem



Transfer learnings for CNNs
Using adversarial learning 

Labelled data  
from scanner A

Scanner A

Scanner A/Scanner B

Scanner B Discriminator

K. Kamnitsas et al. IPMI 2017,  arXiv:1612.08894



Summary and Conclusions

• AI already plays a crucial role in
– Image acquisition and reconstruction
– Image quantification and analysis

• Applications of AI in computer-aided 
detection and decision support have 
been limited so far

• Truly intelligent computer-aided 
diagnosis requires
– Learning from unlabelled, large-scale 

population data
– Integration of imaging and non-imaging 

information, e.g. clinical records and genetics 

Validation is challenging

Optimisation of imaging pipeline with respect 
to clinically useful information

Requires collaboration between computer 
scientists, engineers and clinicians



Current state-of-the-art

Acquisition Reconstruction Analysis

Define relevant 
information



Future: End-to-end optimisation of 
entire imaging pipeline via deep learning

Acquisition Reconstruction Analysis

Define relevant 
information

End-to-end optimisation of acquisition, reconstruction, 
analysis & interpretation via deep learning



Future: End-to-end optimisation of 
entire imaging pipeline via deep learning

End-to-end optimisation of acquisition, reconstruction, 
analysis & interpretation via deep learning

Big data (population data) Multi-modal data
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