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Artificial Intelligence is everywhere!

amazon.com.

Go gle

Advertisement & social media

Image and speech understanding



Artificial Intelligence: p

A lot has happened over the last 40 years
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What about Al in Medicine p

or Radiology?

Forbes Al In Medicine: Rise Of The
o - Machines (Forbes, 2017)

MIT
Technology
Review

THE

NEW YORRKRER

APRIL 3, 2017 ISSUE

A- | . v E RS U 5 M . D o Ai Is Continuing Its Assault on Radiologists

A new model can detect abnormalities in x-rays better than radiologists —in some parts of the

What happens when diagnosis is automated? body, anyway.
T ——

By Siddhartha Mukherjee



Should we worry about Al?

“They should stop training radiologists now.”
Geoffrey Hinton (godfather of deep learning) in 2017

"To the question, will Al replace radiologists, | say
the answer is no...”

“... but radiologists who do Al will replace
radiologists who don’t."

Curtis Langlotz in 2017

macnine
RSNA News Learning

Machine Learning Plays Central Role at g s
RSNA 2017 4 Sy '.hiu'ﬁi&‘.' R
BY MIKE BASSETT » R - -

Langlotz

Machine Learning (ML) and the role it will play in the future of radiology will
be central to a broad scope of programming at RSNA 2017.




Value proposition
Level of diagnostic support

Al in Medical Imaging: Opportunities

A

-
Computer Aided Diagnosis '

f

Computer Aided Interpretation

Quantification of Imaging Biomarkers

Semantic Image Interpretation

Image Enhancement

Image Acquisition and Reconstruction

Tumour quantification
Radiomics

Organ localisation
Organ segmentation

Super-resolution

Automated scan planning
Accelerated imaging



Al in Medical Imaging: Opportunities

- Machine learning techniques are starting to reach levels of
human performance in challenging visual tasks

- Big data is slowly arriving in medical imaging

| UK Biobank will provide large-scale imaging data from 100,000 subjects ’
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Al in Medical Imaging: Opportunities

- Machine learning techniques are starting to reach levels of
human performance in challenging visual tasks

- Big data is slowly arriving in medical imaging
| UK Biobank will provide large-scale imaging data from 100,000 subjects ’

Lifestyle

Genetics

Clinical
records
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Al in Medical Imaging:
Challenges

- Al or machine learning can be classified into:

— Unsupervised approaches
— Supervised approaches

(" R icti
Healthy Prediction

Regression
AD Features /V[ J )
Healthy —»(Moda)

\[ Classification )

AD
Healthy

Labels

Supervision - model optimisation

Training data is key



Al in Medical Imaging:
Challenges

* How to obtain training data?

- Training data is expensive:
— manpower, cost, time

— years of training and expertise
required

- Training data is imperfect:

— training data may be wrongly
labelled, e.g. for diseases such as
Alzheimer’s confirmation requires
pathology (difficult and costly to
obtain)

More importantly, radiology tasks are not simple

classification tasks but far more complex




Overview

Abdominal View
Confidence: 98%

Image segmentation
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MR image acquisition: Challenges

- Magnetic Resonance Imaging (MRI)
— MRI acquisition is inherently a slow process
— Slow acquisition is
- ok for static objects (e.g. brain, bones, etc)
* problematic for moving objects (e.g. heart, liver, fetus)
— Options for MRI acquisition:
- real-time MRI: fast, but 2D and relatively poor image quality

- gated MRI: fine for period motion, e.g. respiration or cardiac
motion but requires gating (ECG or navigators) leading to
long acquisition times (30-90 min).
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Example: Cardiac imaging

Right Ventricle

Left Ventricle

Myocardium
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MR full acquisition

 MRI acquisition is performed in k-space by seque
traversing sampling trajectories.

1|
o



€

MR full acquisition

« MRI acquisition is performed in k-space by sequentially
traversing sampling trajectories.

K-space Signal space
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MR full acquisition

« MRI acquisition is performed in k-space by sequentially
traversing sampling trajectories.

K-space Signal space
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MR full acquisition

 MRI acquisition is performed in k-space by seque
traversing sampling trajectories.

K-space
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K-space undersampling

 Acquiring a fraction of k-space accelerates the process
but introduces aliasing in signal space.
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K-space undersampling

- Acquiring a fraction of k-space accelerates the process
but introduces aliasing in signal space.

K-space Signal space

Full sampling
(slow)




Deep Cascade of CNNs for MR p
Reconstruction

OOOEE  Conv. Net
3x3 Convolution Layer

(I
) [1 Rectified Linear Unit
/i

Residual Layer

Data Consistency Layer

Schlemper et al. IEEE TMI 2017



Deep Cascade of CNNs for MRI
Reconstruction

OOOEE  Conv. Net

3x3 Convolution Layer

—
) [ ] Rectified Linear Unit
(I

Residual Layer

Data Consistency Layer

Denoise (via CNN)
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Deep Cascade of CNNs for MR p
Reconstruction

3x3 Convolution Layer

—
) [ ] Rectified Linear Unit
(I

Residual Layer

Data Consistency Layer
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Schlemper et al. IEEE TMI 2017



(6-fold) ‘

Magnitude reconstruction

(a) 6x Undersampled (b) DLTG (c) CNN (d) Ground Truth

Schlemper et al. IEEE TMI 2017



Magnitude reconstruction (11-fold)

(a) 11x Undersampled (b) DLTG (c) CNN (d) Ground Truth

Schlemper et al. IEEE TMI 2017



Overview

Abdominal View
Confidence: 98%

Image segmentation




Automatic Standard Scan
Plane Detection

€

Abdominal View
Confidence: 98%

Lips View
Confidence: 96%

Goal: Do this in real-time on images straight from US machine
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Automatic Standard Scan
Plane Detection

 Potential applications:

— Guidance: Assist
iInexperienced sonographers

Background (75%)



Automatic Standard Scan p

Plane Detection

 Potential applications:
— Guidance: Assist

iInexperienced sonographers Abdominal
. ) Brain (Tv.)& -
— Convenience: Automatically Brain (Ch M

make a check list of visited
planes




Automatic Standard Scan
Plane Detection

 Potential applications:

— Guidance: Assist
iInexperienced sonographers

— Convenience: Automatically
make a check list of visited
planes

— Reproducibility: Reduce
variability between operators




Automatic Standard Scan p

Plane Detection: Method

* Fully convolutional neural network:

C1(7x7/2)-MP  C2(5x5/2)-MP C3(3x3/1) C4(3x3/1) C5(1xl/1)  C6(I1x1/1)
| I | | |

13x13x64  13x13x128 13x13x128 13x13x64

]
C Global Average Pooling )
Softmax
= (O eI

13x13x K

225x225x1

— Very fast
— Very accurate

C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Automatic Standard Scan
Plane Detection: Data

€

- We use very large 2D ultrasound dataset consisting
of images of standard views and videos

Video of fetal ultrasound examination (typically 20 minutes, 30'000 frames)
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Annotated "freeze frames" saved by operator (typically 30 images)

» Data from
— 2700 patients
— Between 1200 and 4800 images for each standard plane






Automatic Standard Scan p

Plane Detection: Localisation

Conv. (7x7/2) | MP Conv. (5x5/2) /| MP Conv. (3x3/1) Conv. (3x3/1)
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D Convolutions followed by 2x2 max-pooling
D Convolutions with no max-pooling

I_I "Convolutions" with 1x1 kernel

Localisation is (almost) for free in this framework!
C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Automatic Standard Scan
Plane Detection: Localisation

 Can also identify which regions of a frame caused it to
make a particular prediction

4 N /7

Detection Unsupervised Localisation )

Abdominal View
(98%)

Lips View
(96%)

J
(a) Input frame (b) Prediction (c) Category-specific (d) Localised (e) Approximate
feature map salicency map localisation

« This can be used for localisation of the fetal anatomy
without having bounding boxes for training

C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017






Overview

Abdominal View
Confidence: 98%

Image segmentation




Convolutional Neural Networks @

for Image Segmentation
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B Max pooling B Softmax Skip layers




€

Image segmentation as a
machine learning problem

* Fully connected networks (Long et al., 2015)

- Manual annotations of 4,872 subjects (QMUL/Oxford)
with 93,128 pixelwise annotated 2D images slices

- Divided into training/validation/test: 3,972/300/600

Petersen et al. Journal of Cardiovascular Magnetic Resonance (2017) 19:18

DOI 10.1186/512968-017-0327-9 Journal of Cardlovascular
Magnetic Resonance

RESEARCH Open Access

Reference ranges for cardiac structure and &
function using cardiovascular magnetic

resonance (CMR) in Caucasians from the UK
Biobank population cohort

Steffen E. Petersen'”, Nay Aung', Mihir M. Sanghvi', Filip Zemrak', Kenneth Fung', Jose Miguel Paiva',
Jane M. Francis®, Mohammed Y. Khanji', Elena Lukaschuk?, Aaron M. Lee', Valentina Carapellaz, Young Jin Kim?3,
Paul Leeson?, Stefan K. Piechnik? and Stefan Neubauer?




SA, apical

LA, 2 chamber LA, 4 chamber



Evaluation of segmentation accuracy ‘
Comparison to expert observers

(a) Absolute difference

Auto vs Man| | Olvs 02 0O2vs 03 0O3vsO1 |
(n = 600) ! (n = 50) (n = 50) (n = 50)

LVEDV (mL) 6.1i5.3 6.1i4'4 8.8i4‘8 4.8:|:3,1
LVESV (mL) 5-3i4.9 4-1i4.2 6.7lL4.2 7-1i3.8
LVM (gram) 6.945.5 42435  6.6149  6.514g
RVEDV (mL) 8.5j:7.1 11-1j:7.2 6-2j:4.6 8.715,8
RVESV (mL) 7-2:|:6.8 15.617_8 6.615.5 11-7:|:6.9

(b) Relative difference

Auto vs Man ! Olvs 02 0O2vs 03 0O3vs Ol
(n=600) || (mn=50) (n=50) (n=50)

LVEDV (%) 41435 4.2431 6.343.3 3.449 9
LVESV (%) 9.549.5 6.847.5 12.54¢5 5 11.7451
LVM (%) 8.347.6 4.443 5 6.043.7 6.74+4.6
RVEDV (%) 5.644.6 8.045 0 4.2431 57136

RVESV (%) | 1184122 ||30.61155 109185 169195




DeepMedic in Action

K. Kamnitsas et al. Medical Image Analysis, 2016



DeepMedic in Action

K. Kamnitsas et al. Medical Image Analysis, 2016



Practical challenges in many Al
scenarios: Deployment in the clinic

- Al-based solutions often degrade
when deployed in clinical sce

 This is caused by differs
between training



Transfer learnings for CNNs @

Using adversarial learning

i Discriminator

Labelled data
from scanner A

Scanner B

Scanner A/Scanner B

K. Kamnitsas et al. IPMI 2017, arXiv:1612.08894



Summary and Conclusions @

Requires collaboration between computer
scientists, engineers and clinicians

Optimisation of imaging pipeline with respect
to clinically useful information



Current state-of-the-art

Acquisition

Define relevant
information

Reconstruction

NI

|

<)

al
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Future: End-to-end optimisation of p
entire imaging pipeline via deep learning

End-to-end optimisation of acquisition, reconstruction,
analysis & interpretation via deep learning



Future: End-to-end optimisation of p
entire imaging pipeline via deep learning
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End-to-end optimisation of acquisition, reconstruction,
analysis & interpretation via deep learning

enterpase  infrastructure
ations

nkor

Dementias
PlatformU«
Medical Research Council

Big data (population data)

Multi-modal data
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