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Agenda:

1. Introduction (my experience to date)

2. What can we do using routinely collected health data?
3. My view on predicting individual risk of an outcome
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1. Introduction: Masao lwagami, MD, MPH, MSc, PhD

Key words: Routinely collected health data
Acute kidney injury (AKI), Chronic kidney disease (CKD),
Sepsis, Mental health disorders, Pharmacoepidemiology

Inpatient Outpatient

routinely collected data | routinely collected data
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2. What can we do using routinely collected data?

(i) To describe burden of a disease

(ii) To examine the association between an exposure and
an outcome

(iii) To predict individual risk of an outcome
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dt NEPHROLOGY U@y  British Journal of
n i General Practice

TRANSPLANTATION

Current state of continuous renal
replacement therapy for acute kidney injury
in Japanese intensive care units in 2011:
analysis of a national administrative database

Chronic kidney disease and cause-specific hospitalisation:
primary and secondary care patient data

Masao Iwagami, Ben Caplin, Liam Smeeth, Laurie A Tomlinson and Dorothea Nitsch

@ o - - Pts with CKD are hospitalised
Masao Iwagami &=, Hideo Yasunaga, Eisei Noiri, Hiromasa Horiguchi, mOI’e Often thaﬂ PtS WIthOUt CKD
Mortality of dialysis AKI = 50.6% for various reasons

Most likely conclusions: More clinical attention,
research, and funding are needed for the disease




2. What can we do using routinely collected data?

(i) To describe burden of a disease
(ii) To examine the association between an exposure and

an outcome

(iii) To predict individual risk of an outcome

Critical Care Medicine

Societyof
Critical Care Medicine

Postoperative Polymyxin B Hemoperfusion and
Mortality in Patients With Abdominal Septic Shock:
Propensity-Matched Analysis*

There is no association between
endotoxin adsorption and mortality

British Journal of
Clinical Pharmacology

@=— BJCP

Gastrointestinal bleeding risk of selective
serotonin reuptake inhibitors by level

of kidney function: A population-based
cohort study

There is association between SSRI
(antidepressants) and Gl bleeding

Most likely conclusion: If the association was causal,
modifying the exposure would/wouldn’t improve the outcome
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Development of risk prediction model for re-admission in large inpatient
data with machine learning

Project/Area Number 19K19430

Research Category Grant-in-Aid for Early-Career Scientists

Allocation Type Multi-year Fund
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Principal Investigator SLH8x WERE EFEER, Bi# (30830228)

Project Period (FY) 2019-04-01 - 2022-03-31

Project Status Granted (Fiscal Year 2019)

Budget Amount *help ¥4,290,000 (Direct Cost: ¥3,300,000, Indirect Cost: ¥990,000)




3. My view on predicting individual risk of an outcome

(i) Is it useful?
(ii) Is machine learning better than traditional methods?
(iii) Does better prediction benefit more?
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Articles [

An artificial intelligence-enabled ECG algorithm for the @ ®
identification of patients with atrial fibrillation during sinus o
rhythm: a retrospective analysis of outcome prediction

Zachil Attia*, Peter A Noseworthy*, Francisco Lopez-Jimenez, Samuel | Asirvatham, Abhishek | Deshmukh, Bernard | Gersh, Rickey E Carter,
Xiaoxi Yao, Alejandro A Rabinstein, Brad ] Erickson, Suraj Kapa, Paul A Friedman

Summary

Background Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart Lancet2019;394: 861-67
failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. published online

We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using Avgust1,2019

machine learning. http:,-',-'dx.doi:org,-'ltilﬂlﬁ;'
50140-6736(19)31721-0
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What is vour blan? Your current risk of | Your future risk
yourpian< 1 colon cancer = 70% | of stroke = 70%

Bad validity Stop smoking
Sensitivity = 50% Keep observation Exercise
Specificity = 50% Decrease BP

Good validity Stop smoking
Sensitivity = 95%  Resecting colon Exercise

Specificity = 95% Decrease BP



Key messages from Dr. Masao lwagami

Routinely-collected health data can be used
(i) To describe burden of a disease

(ii) To examine the association between an exposure and
an outcome

(iii) To predict individual risk of an outcome

In the predicting individual risk of an outcome,

(i) Is it useful?

(ii) Is machine learning better than traditional methods?
(iii) Does better prediction benefit more?

The most important is to find when the answers are “yes’”.
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