

Joint AMS and JSPS symposium on medical imaging and artificial intelligence 23 January 2018, Academy of Medical Sciences, 41 Portland Place, W1B 1QH

A navigation system for safer surgery - Lessons learned from aortic vascular surgery -

Miyuki UEMATSU^{*1}, Shigeyuki AOMI^{*2}, Kiyotaka IWASAKI^{*3}, Mitsuo UMEZU^{*3}, Hiroshi IIMURA^{*4}, Yoshihiro MURAGAKI^{*4}, Hiroshi ISEKI^{*4}, Rysuke NAKAOKA^{*1}, Yuji HAISHIMA^{*1}

- 1. Division of Medical Devices, National Institute of Health Sciences
- 2. Center for Marfan Syndrome and Aortic Disease, Ayase Heart Hospital
- 3. TWIns, Waseda University
- 4. Institute of Geriatrics, Tokyo Women's Medical University
- 5. FATS, Tokyo Women's Medical University

Graft replacement for aortic aneurysm

Clinical Needs

Walk on his own

Need assistance walking

Key to prevent palaplegia

Detect and reconstruct the most important artery to maintain sufficient blood flow to the spine

RAM: Radiculomedullary artery

F.H.Netter: Atlas of Human Anatomy

K. Uotani et al. AJNR Am J Neuroradiol 29:314-318, 2008

Collateral network concept

An extensive collateral network of arteries which link the circulation of the spinal cord, the paravertebral tissues, and the skeletal muscles of the back both axially and transversely exists.

Etz et al: J Thorac Cardiovasc Surg 2011;141:1020-8 Etz et al: J Thorac Cardiovasc Surg 2011;141:1029-36

Some surgeons say that

"it is not necessary to identify the Adamkiewicz artery."

 \rightarrow Is it true?

Don't they have any clues that could confirm the location of the artery during surgery?

Arrangement of aorta and intercostal arteries "depend on each patient"

difficulties in correct anatomical orientation

Our navigation system

First navigation: **before thoracotomy**

Clinical Outcomes

Preoperative characteristics of patients who underwent open TAA/TAAA repair

	(Between Feb 2004 and Aug 2016)	(Between Jan 2000 and Oct 2011)	
	TWMU	All Japan Open Surgery(*)
Characteristics	n=83	n=1471	P-Value
Age, y.mean(+/-)SD	57±15	64±13	<.001
Male sex, n(%)	66(70.0%)	1069(72.7%)	.892
Hypertension, n(%)	44(53.0%)	1213(82.5%)	<.001
Hyperlipidemia, n(%)	8(9.6%)	370(25.2%)	<.001
Smoking, n(%)	5(6.0%)	827(56.2%)	<.001
Coronary artery disease, n(%)	12(14.5%)	254(17.3%)	.653
Renal failure, n(%)	12(14.5%)	202(13.7%)	.870
Dialisys, n(%)	4(4.8%)	51(3.4%)	.533
Cerebrovascualr disease, n(%)	10(12.0%)	189(12.8%)	1
Chronic lung disease, n(%)	12(14.5%)	253(17.2%)	.652
Liver disease, n(%)	1(1.2%)	8(0.5%)	.391
Dissecting	51(61.4%)	<mark>539(36.7%)</mark>	<.001
-D(A)	13(15.7%)		
-D(B)	38(45.8%)		
Nondissecting	30(36.1%)	837(56.9%)	<.001
Infected	3(3.6%)	79(3.2%)	.620
Emergency repairs, n(%)	4(4.8%)	253(16.8%)	.002
Preoperative AKA identification, n(%	69(83.1%) 6 9(83.1%)	748(50.8%)	<.001

* J Thorac Cardiovasc Surg. 2016 Jan;151(1):122-8.

Data were collected from Japanese Study of Spinal Cord Protection in Descending and Thoracoabdominal Aortic Repair investigators.

Surgical outcomes							
Number of cases							
	(Between Feb 2004 and Aug 2016) (Betw TWMU A		Ween Jan 2000 and Oct 201	11)			
_	<u>n=83 n=467</u>						
Crawford							
	I	13	137	Extent IV: eliminated (due to differences in surgical techniques)			
		43	136				
		27	194				
<u>Outcomes</u>							
	Mortality (n, %) Spinal Co		Spinal Corc	d Injuries (n,%)			
	TWMU	All Japan	TWMU	All Japan			
Crawford							
I	0 (0%)	14 (10.2%)	1 (7.7%)	13 (9.5%)			
II	4 (9.3%)	14 (10.3%)	2 (4.7%)	19 (14.0%)			
III	0 (0%)	26 (13.4%)	1 (3.7%)	28 (14.4%)			

* J Thorac Cardiovasc Surg. 2016 Jan;151(1):122-8.

Data were collected from Japanese Study of Spinal Cord Protection in Descending and Thoracoabdominal Aortic Repair investigators

AKA image acquisition by MDCTA*

*MDCTA: multidetector computed tomographic angiography

ZERO paraplegia

- 3/14 emergency 11/14 AKA undepicted
- 69 AKA <u>were identified by</u>
 - cases 'Pre-operative' MDCT Angiography
 - 6 'Post-operative' MDCT Angiography was not performed

4/6 death 2/6 AKA undepicted

63 (Pre- and Post- operative' MDCT Angiography were performed

In 69 cases, the connectivity of target artery to Adamkiewicz artery were identified, preoperatively.

amout

Maintenance of the patency of the target artery and Adamkiewicz artery

In 38 cases, the connectivity of target artery to Adamkiewicz artery were identified, postoperatively.

Discussion

The navigation system largely contributed in lowering the risk of paraplegia to one in ten.

<u>Summary</u>

Our navigation system was applied for TAAA repair. <u>Clinical finding as follows:</u>

(1) Should the target artery be reconstructed?

No. Not always.

Surgeons are required to make a decision by considering individual cases during surgery.

(2) Preoperative CT image acquisition to identify Adamkiewicz artery(AKA) is needed?

Yes, it does.

A surgeons' decision changes, based on whether or not AKA is depicted .

In TAAA repair,

(2) Preoperative CT image acquisition to identify Adamkiewicz artery(AKA) is needed?

(i) AKA was not depicted

Superior: collateral arteries

No paraplegia was occurred regardless of reconstruction of the intercostal artery.

(ii) AKA was depicted Superior: AKA

The reconstruction of the intended artery is a key to maintaining sufficient blood supply.

Contribution of 'Artificial Intelligence' in surgery

✓ selection of appropriate treatments

Fair and equitable distribution of health system resources

✓ role in effective surgical procedures

guidance driven by such big data will support a surgeons' existing excellent skills and wealth of experience

Thank you for attention

Acknowledgements

This work was supported by KAKENHI Grant-in-Aid for Scientific Research C 26350562.

Hayato Ando, Mikiko Hara, Ryuhei Utsunomiya Kodai Matsukawa, Yoshitaka Nakano, Chia-Chun Hsu Rei Sakamoto, Takuya Ichihashi, Yoshihiro Takahashi Hiroki Ito, Tomoya Fujii, Taku Akaoka, Atsushi Morita Hirokazu Suzukawa, Takashi Suzuki, Kyojiro Nambu

