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Figure 7: Example of atrophy voxel-wise value for whole brain, for manual KN-BSI, STEPS-KN-BSI, pBSI1, pBSI� and gBSI,

obtained on an AD patient. Measured atrophy is represented in blue/light-blue and growth in red/orange.
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• Neuroradiologists interpret or "read" the acquired 

images and produce a report of their findings and 
impression or diagnosis. 

• Referring physician reinterprets the findings against 

symptoms to obtain the final integrated diagnosis. 


• Neuroradiology has a problem: 

– MRI & CT increase 10-12% per year compounded


– Radiologists increase 1-3% per year

– Limited NHS funding, no increase in training rates, 

escalating data complexity
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Classic Neuroradiology



• Normally small training datasets


• Very variable input data


• Accuracy is paramount


• Speed is not important (with exceptions)


• Ability to extrapolate


• Problem specific solutions


• No ground truth


• Large unstructured data 


• Ethics and clinical adoption

Challenges of quantitative neuroradiology
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Fig. 2. Brainweb Moderate MS model. Left to right) T1 and T2 MRI, groundtruth
lesion segmentation and the proposed lesion segmentation, folowed by the inlier ob-
servation model p(ỹi, x̃i, jn|lIi ,X , ✓) and the outlier prior p(lOi |ỹi, x̃i, j,X , ✓). Note that
the outlier prior combines p(ỹi, x̃i, jn|lIi ,X , ✓) and the label priors.

and severe MS lesion loads respectively, and equivalently, a Dice overlap of 41.8,
51.6 and 65.5 for the proposed method. Note the dramatic increase in accuracy,
mainly for the mild MS model. No statistical comparison was performed for this
experiment because only three MS models are available in Brainweb.

3.2 Quantitative assessment using patient data

This validation aims to determine quantitatively the accuracy of type 2 diabetes
white matter lesion (WML) segmentation using the proposed segmentation al-
gorithm and the classical OSM method [5]. For this study, the 20 brain images
from the MRBrainS2013 challenge, comprised of both controls and Type 2 dia-
betes patients (mean age 71±4 years) with WML, were acquired on a 3T Philips
scanner with a 3D T1 (1 ⇥ 1 ⇥ 1mm), and fluid attenuated inversion recovery
(FLAIR) image (0.96 ⇥ 0.95 ⇥ 3mm) were obtained. Further details about the
acquisition and data preprocessing (bias field correction and T1-FLAIR regis-
tration) is described in [11] and in the MRBrainS2013 website. Manual WML
segmentation was performed on FLAIR images.

With the aim of segmenting only pathological FLAIR hyperintense WML
and not the non-pathology-related hyperintense choroid plexus, or the hypo-
intense iron accumulation in the globus pallidus (see the manual segmentation
in Fig. 3), the template observations X should to contain some non-pathological

Fig. 3. Subject 4 and 18 of the MRBrainS database. From left to right) T1 and FLAIR
MRI, gold standard lesion segmentation, OMS segmentation, the proposed segmenta-
tion and the outlier prior p(lOi |ỹi, x̃i, j,X , ✓).
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a leave one out approach on the 30 young controls. Then,
the accuracy of information extrapolation accuracy will be
characterised by propagating the brain segmentations from the
elderly control group to the MCI and AD patients. Note that
this validation does not attempt to show that the proposed al-
gorithm is better than state-of-the-art methodologies, but only
to show the benefits of geodesic propagation in detriment of
pairwise propagation, as the geodesic propagation framework
can be used with most fusion methodologies.

A. Multi-label propagation accuracy
The accuracy of propagating information through a geodesic

path was compared to MAPER [11]. The results for MAPER
were kindly provided by Rolf Heckemann. As the amount of
parcelations available for validation is limited, a leave-one-
out cross validation was performed only on the 30 young
controls that have manual brain parcelations. One should
note that the limited availability of segmentations restricts
the range of morphological variability in the propagation,
thus not representing the real performance when segmenting
morphologically dissimilar subjects.

In this paper, the Dice score was used as a measure of
accuracy. The mean Dice scores per structure for the the
leave-one-out cross validation are shown in Table I. Out of
83 structures, 15 structures had a significantly higher Dice
score using the Geodesic information Flow when compared to
MAPER, while only two structures (lingual gyrus and superior
parietal gyrus) where better segmented in MAPER. The mean
Dice score over all structures and all patients for the proposed
method (0.8182) was significantly higher (p < 10�4) than in
MAPER (0.8089) using a two-tailed paired t-test. An example
of the propagation to a highly atrophied subject from the ADNI
database is shown in Fig. 7.

B. Information Extrapolation Accuracy
In the previous subsection, the accuracy of propagating

information through a geodesic path was limited to a morpho-
logically similar set of subjects. Thus, the previous validation
will not capture the ability to extrapolate information to
anatomically disparate subjects. The information extrapolation
accuracy is thus assessed by using only a subset (the elderly
control group) of all the manual brain segmentations. This
morphologically clustered set of data is then used to segment
both the MCI and AD groups, assumed in this work to be
morphologicaly less similar than the subjects within the train-
ing propulation. The proposed geodesic propagation algorithm
is compared to a direct propagation algorithm based on the
locally weighted majority voting algorithm with a inverse
exponential weight proposed by Yushkevich et al. [23]. This
algorithm was chosen due to its similarities with the proposed
technique (pairwise vs. geodesic weighted majority voting).

The results are presented in Fig. 6 and Fig. 7 , with
segmentation accuracy measured using Dice similarity. The
mean (std) Dice score for the proposed geodesic method was
0.941(0.008) and 0.949(0.008) for the AD and MCI groups
respectively while for the direct method, the mean (std) Dice
score was 0.934(0.009) and 0.942(0.008) for the AD an MCI

TABLE I
MEAN DICE COEFFICIENT FOR A SET OF KEY STRUCTURES, COMPARING

THE PROPOSED METHOD (GIF) WITH MAPER [11]. STATISTICALY
HIGHER MEAN DICE IS SHOWN IN BOLD FONT. ONLY A LIMITED NUMBER
OF STRUCTURES ARE SHOWN DUE TO RESTRICTIVE SPACE AVAILABILITY.

Structure Unilateral Structures
GIF MAPER p-value

All Structures 0.8182 0.8089 < 10�4

Corp. callos. 0.8805 0.8674 < 10�4

Brainstem 0.9531 0.9377 < 10�4

Structure Left Side
GIF MAPER p-value

Hippocampus 0.8442 0.8335 0.0046
Amygdala 0.8263 0.7922 < 10�4

Cerebellum 0.9712 0.9664 0.0020
Caudate nucl. 0.8985 0.8923 0.0370
Nucleus acc. 0.7582 0.6834 < 10�4

Putamen 0.9071 0.8916 < 10�4

Thalamus 0.9210 0.8879 < 10�4

Pallidum 0.8564 0.7661 < 10�4

Lateral vent. 0.9020 0.8985 0.0009

Structure Right Side
GIF MAPER p-value

Hippocampus 0.8249 0.8211 0.2120
Amygdala 0.8245 0.7830 < 10�4

Cerebellum 0.9734 0.9678 < 10�3

Caudate nucl. 0.9020 0.8955 0.0279
Nucleus acc. 0.7326 0.6707 < 10�4

Putamen 0.9109 0.8959 < 10�4

Thalamus 0.9206 0.8852 < 10�4

Pallidum 0.8551 0.7672 < 10�4

Lateral vent. 0.9124 0.9084 0.0018

groups respectively. This represents a statistically significant
(p < 10�4) increase in segmentation accuracy when using a
two-tailed paired t-test for statistical comparison. Note that one

MCI_Direct MCI_Geodesic AD_Direct AD_Geodesic
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Fig. 6. Dice scores for direct and geodesic propagation of brain mask.

Fig. 7. An example of the propagation of the structural parcelation to
an atrophied subject (ID:1049) from the ADNI database. Note the correct
ventricle segmentation and the smooth deep grey matter parcelation.



Big Data @ UCL

• 300.000 sessions - +2.5M Volumes 

• Many images & follow-up data


• 2.5M Volumes


• 14k “different” sequences


• 15+ different scanners


• From 0.5 - 7T (mostly 1.5T and 3T)


• RIS - Radiological reports 

• CDR - ICD-10 codes 

• Blood tests
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Big Data @ UCL

•What questions can we ask? 

•Epidemiology and learning disease structure 


•Service optimisation: 


•Workflow: Triage, Prioritisation, Recall


•Managmment: Auditing, Bed usage, Cost-code optimisation, etc.


•Surveillance/Diagnosis/Prognosis


How do we learn from an unbalanced pool of pathologies given 


a largely non-overlapping set of sequences?
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Parameterising Clinical Reports
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• Deep Autoencoding - Low dimensional (2D) projection of Rad Report vs “Ataxia”


– Reporting is consistent with regards to “appearance” and non-trivial (Cerebellum vs Sensory)

Big Data @ UCL
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Big Data @ UCL

• 20000 radiologically normal → 6207 Asserted Normals

• Do standard Neuro pipelines work?


– … with this “beautiful” data
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Population Analysis

• 40000 radiologically normal 

•  6207 Asserted Normals
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Age: R=0.897, RMSE=6.246 years


Sex: 95.97% accuracy



Population Analysis

• 40000 radiologically normal 

•  6207 Asserted Normals


• Region statistics
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MRI Imaging Delineation Population Distribution



Machine Learning: Classification Abnormality Detection

• Gaussian process (GP) - Probabilistic classification/predictions

• Variational/Denoising Auto-encoders for abnormality detection
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UCL TIG Translational Pathway
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Quantitative Neuroradiology Initiative

• Patient-specific phenotyping tools for clinical data


• The Data


– Can be low resolution (slice thick. 3/5/7mm)


– Artefacts 


– Inconsistent scanning parameters


• 1400 different “sequences”


– Inconsistent availability of modalities


• Homogenising data acquisition across sites


– Quality Control/Assurance, data identification


• Extracted metadata is integrated into a clinical report


• Collaboration with ION & NHNN
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Translation to Clinical Usage 

Healthy Early Alzheimer's 
Disease

Alzheimer's 
Disease
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Translation to Clinical Usage 

Healthy Early Alzheimer's 
Disease

Alzheimer's 
Disease
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Translation to Clinical Usage 

Healthy Early Alzheimer's 
Disease

Alzheimer's 
Disease



Translation to the Real World

•  Translation to Clinics: Neuroradiological workflow


–  Deploy results into reporting platform


– Disease specific biomarkers


– Available at reporting time (HPC)


–  Push to patient health care record


– Available to referring physician


– Retrievable for longitudinal analysis


• Translation to industry: BrainMiner


– UCL spinoff


– Translate TIG/QNI beyond UCL


– SBRI award £1.1M


– Build CE marked/FDA approved software
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Questions?


